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SEPARATION OF A GAS MIXTURE FLOWING THROUGH A LONG TUBE AT LOW PRESSURE" 

By R. D. Present and A. J. deBethune 

ABSTRACTt 

The separation of a binary gas mixture by diffusion through a capillary of radius r depends on 
the fact that the molecules have different masses mj and mean speeds vi. When the inlet pressure 
is so low that the mean free path X is much greater than r, the flow is diffusive and the separation 
factor (at zero outlet pressure) has its maximum value (n^/mi)-"-'   . At high pressures (X <S  r) no 
separation occurs. 

This paper treats the intermediate case (X « r) where the transfer of forward momentum from 
light to heavy molecules in unlike collisions equalizes the transport velocities and-decreases the 
separation factor. As the inlet pressure rises, this effect makes the flow nonseparative before it 
becomes viscous. Flow equations are derived by equating the momentum acquired by the light com- 
ponent from the pressure gradient to the momentum lost to the wall plus that transferred to the 
other component. The viscous effects are treated as a small additive perturbation on the flow. The 
integrated flow equations express the separation factor as a function of the inlet and outlet pres- 
sures. 

INTRODUCTION 

For purposes of orientation, we consider first the effusion of a gas mixture through a circular 
orifice. The nature of the flow depends on the comparative magnitude of the mean free path X and 
the radius r of the opening. When the opening is large (r »X), many collisions occur in the vi- 
cinity of the orifice and, if two kinds of molecules are present, there is a continual transfer of mo- 
mentum from the lighter, faster molecules to the heavier, slower molecules with the result that 
both kinds of molecules pass through the opening together with a common mass motion. Such a flow 
may be treated by the methods of hydrodynamics and the results are well-known. Since both com- 
ponents travel with the common drift velocity, the flow is nonseparative. 

In the other limiting case (r < X), a molecule traveling through the hole has very little chance 
of colliding with another molecule in the vicinity of the hole, i.e., the molecules effuse through the 
orifice independently with a velocity component proportional to the mean speed v of thermal agita- 
tion and inversely proportional to ml/2, where m denotes the molecular mass. Hence the flow in 
this limit is separative. 

If the molecular particle density in front of the orifice be denoted by nF and behind the orifice 
by nB, the net molecular flow per unit time per unit area of the opening is (1/4)v(np-ng) according 
to elementary kinetic theory. The intermediate or transition region where X and r are comparable 
is very difficult to treat. However, it is qualitatively clear that the nature of the flow and the amount 

*See Manhattan Project Report A-1289, Part I, June 8, 1944, and Part II, September 5, 1944. 
tA preliminary abstract was published in Phys. Rev. 69:259 (1946). 
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of separation will depend essentially on the parameter r/X. For a given hole size the separation 
can be improved by decreasing the pressures and thus increasing the mean free path, or conversely 
if the pressures are fixed the separation is improved by decreasing the size of the orifice. 

We are primarily interested ir, the transition region where r and X are comparable. The prac- 
tical separation of gas mixtures by low pressure diffusion is accomplished through the use of some 
kind of a porous medium or "barrier."1 It has been experimentally that the flow through a porous 
medium is in essential respects similar to the flow through a long capillary tube and quite unlike 
the flow through the orifices of a thin perforated membrane.2 Thus, at high pressures, the pressure 
dependence of the flow through a porous medium is that of capillary viscous laminar flow and not 
that expected for orifice flow. At very low pressures the order of magnitude of the permeability 
of inverse flow resistance is compatible with the capillary flow value but not with the orifice flow 
model. The case of capillary flow at pressures in the transition region is, therefore, of greater 
practical interest and, in addition, is more amenable to theoretical treatment than the analogous 
problem for orifice flow. 

The nature of the flow of a gas through a long circular capillary of radius r depends again on 
the comparative size of r and X. If X<£ r the flow is given by the Poiseuille formula; in the case of 
a gas mixture both components are transported with the drift velocity and no separation takes place. 
In the other limit (X »   r) the flow obeys the well-known Knudsen formula,3 

f = -(16r/377mv)dp/dx = -(2vr/3)dn/dx (1) 

where r denotes the mean flow in molecules per unit area per unit time in the x-direction (axis of 
the capillary). The flow per unit area r varies with the distance from the axis* and ^represents 
the total flow divided by the area of cross section 7rr2. Formula (equation) 1 has been confirmed by 
both Knudsen3 and Adzumi4 in experiments with bundles of capillary tubes at very low pressures. 
Equation 1 will be referred to as the Knudsen or free-molecule flow formula and it is valid only 
when X »  r. It clearly represents a diffusive flow and the diffusion coefficient is 2vr/3. This cor- 
responds to a mean random-walk step-size of 2r; i.e., the mean free path for inter molecular col- 
lisions (ordinary gaseous diffusion) is replaced by the mean free path for wall collisions (Knudsen 
diffusion). Since the molecules diffuse independently of each other, Equation 1 can be applied to both 
components of a gas mixture if the partial density gradients are used. We denote the concentration 
or mol fraction of the lighter gas at the inlet of the capillary by N and at the outlet by v. The sepa- 
ration factor f is customarily defined by: 

f = (f/l-iV(N/l-N) (2) 

When X »  r and the outlet pressure is zero, the separation factor has its maximum or "ideal" 
value f+. It follows immediately from equation 1 that f+ = (m2/mi)1'2 where m2 is the molecular 
mass of the heavier and m^ of the lighter gas. According to equation 1, when the outlet or back 
pressure is zero, the composition of the flowing gas is constant down the length of the tube and 
changes discontinuously at the exit to the composition of the enriched outlet mixture. This may be 
understood as follows: the concentration ratio of the two components in the outlet mixture is the 
same as the flow ratio of the two components in the tube; however, the flow ratio is equal to the con- 
centration-ratio times the ratio of transport velocities and the latter is constant and equal to 
(m2/m1)1/2c When the back pressure is not zero the outlet mixture diffuses back into the tube and, 
according to equation 1, the concentration of light gas increases monotonically from the inlet to the 
outlet. In this case f obviously decreases as Pg/pp, the back-pressure to fore-pressure ratio, in- 
creases. 

*r = -l/2vaE(r/a)dn/dx where "r" is the distance from the axis, "a" the tube radius, and 
E denotes the complete elliptic integral of the second kind, as shown by Pollard and Present, Phys. 
Rev. 73:762 (1948), Appendix II. 
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Knudsen,3 Gaede,5 and Adzumi4 measured the flow of pure gases through capillaries over the 
entire pressure range from X » r to X   <   r, and Gaede also made similar measurements of the 
flow between parallel plates. At high pressures their results can be represented in the usual way 
by the Poiseuille formula for viscous laminar flow plus a small correction term proportional to 
the pressure gradient. This correction term, which was originally attributed by Maxwell to "slip," 
has the same form as, but is smaller than, the free-molecule flow. When the specific flow (total 
flow/pressure drop) was plotted against the mean pressure, all three investigators found evidence 
of a slight minimum at low pressures when the mean free path was nearly equal to the tube diam- 
eter. Thus the specific flow initially decreases slightly (10 to 20 per cent) below the free-molecule 
value and then increases linearly with the pressure according to the Poiseuille law. A theoretical 
treatment of self-diffusion through a long capillary tube valid over the entire pressure range from 
X »  r to X <£  r has been given by Pollard and Present.6 Their work explains the existence of the 
minima observed by Knudsen, Gaede, and Adzumi; furthermore, it predicts the absence of such 
minima in the case of flow through porous media. Observations'7 on the flow of pure gases through 
many types of porous media have shown the relation between specific flow and average pressure to 
be accurately linear down to pressures for which the mean free path X is of the order of several 
hundred times the mean pore radius r. These results imply that the flow through a porous medium 
can be accurately represented over the entire pressure range from X » r to X «: r by an expres- 
sion of the form: 

(c-L/mVZjdp/dx + (c2/»j)p dp/dx (3) 

i.e., by simply adding a laminar flow (viscosity 7?) to a free-molecule diffusive flow. Therefore, 
both theory and experiment have shown that the two types of flow, while not strictly additive in long 
capillary tubes, appear to be so in many porous media. 

Further experiments performed at the SAM laboratories (mainly by Lagemann, Weil, Schleicher, 
Slack, Callihan, and Roberts) indicated that, in the case of a binary gas mixture flowing through a 
porous medium, the separation factor at intermediate pressures (X ~ r) could not be accounted for 
by assuming an equation of the form of equation 3 to hold for each component. At fore-pressures 
for which f (measured at zero back-pressure) was well below its ideal value f+, flow measurements 
showed that the nonseparative viscous flow could be altogether negligible; i.e., the flow of the mixed 
gas was simply proportional to the pressure gradient. The experiments thus indicated the existence 
at intermediate pressures of a nonseparative nonviscous component of the flow which, when added 
to the separative free-molecule flow, gives rise to a total flow proportional to the pressure gradient 
as observed. Epstein** came to the same conclusion from a theoretical argument and Badger9 made 
this the basis of a semi-empirical flow equation. Badger assumed that in a mixed flow the separa- 
tive Knudsen diffusion should be weighted by a factor 1/1 + cp and he added to this a nonseparative 
diffusion term weighted by the factor cp/1 + cp. Apart from the effects of viscosity, which were 
neglected by Badger, his equations are very similar to, though not identical with, those to be de- 
rived in the following section. 

MOMENTUM TRANSFER THEORY 

Let us consider first the changes that take place in the character of the flow as X decreases 
from an initially large value. In a long tube of length L   »   r there will be no intermolecular col- 
lisions so long as X » L. If L  » X » r, a molecule will make many intermolecular collisions 
before reaching the outlet, but for every collision that a molecule makes with another molecule, it 
will make many collisions with the wall. Now the flow is ideally separative as long as intermolecular 
collisions can be neglected; when these occur momentum is transferred on the average from the 
lighter to the heavier gas so that the flow rates tend to equalize. If X » r, the effect of a momentum 
transfer in an intermolecular collision is effaced during the many subsequent collisions with the wall 
which precede another intermolecular collision, and in which the molecule comes into equilibrium 
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wit;  thf molecules of the wall. Thus the flow remains ideally separative Knudsen flow until the 
n:f.::vi i?. s,-> path A becomes comparable to the diameter of the tube. When X ~ r the effect of an 
ir.';c; riolecular collision persists until the next inter molecular collision, and the cumulative effect 
of collisions between unlike molecules is to equalize the flow rates and diminish the separation ef- 
ficiency. The transfer of forward momentum from the lighter to the heavier gas can take place in 
the absence of an appreciable gradient of the drift velocity normal to the tube axis, whereas the 
viscous transfer of momentum sets in only after the transverse velocity gradient has been estab- 
lished. We calculate first the nonseparaüve effect of collisions between unlike molecules on the 
free-molecule flow, neglecting viscous effects. 

Consider the steady-state flow of a mixed gas through a long capillary of radius a extending 
in the x-direction. Regarding a cylindrical element of gas of length dx it is clear that the molecules 
of component 1 will receive a net forward momentum per unit time equal to -ffr2(dp^/dx)dx where 
PI is the partial pressure of gas 1. If component 1 is the lighter gas, this momentum is transferred 
partly to the wall and partly to gas 2; on the other hand, gas 2 receives momentum from the pres- 
sure gradient and from collisions with gas 1 and transmits it to the wall of the tube. Consider first 
the momentum transfer to the wall and let us denote by VL\ the transport or mean x-component of 
velocity of gas 1. If the molecules leave the wall in completely random directions after a collision 
with the surface (an assumption well-confirmed by experiment^), they must on the average communi- 
cate their whole forward or x-component of momentum to the wall. The momentum transferred 
each second would then be expected to be mu • (nv/4) • 2wrdx for a pure gas. This is confirmed by 
a direct calculation using an approximate distribution function for a drifting gas (see reference 6, 
Appendix I). However, this result implies no variation of n, u and  F = nu over the cross section of 
the tube and, as previously mentioned4 (footnote on page 2), F varies with distance from the axis 
in free-molecule flow. From equation 1 we obtain: 

dp/dx = -(37rmv/16r) F = -(3zrmvnu/16r) (4) 

where u represents the drift velocity averaged over the cross section. Multiplying both sides of 
equation 4 by 77r2dx, the left-hand side becomes the resultant force on a cylindrical element due to 
the pressure gradient and the right side then represents the mean transfer of momentum from the 
gas to the wall per unit time:  (3TT/8) -m u - (nv/4) ■ 2;rrdx. This result, which differs by a factor of 
3TT/8 from that first given, will be used in the following presentation. 

We come next to the calculation of the momentum exchange between the two components of the 
gas mixture in the cylindrical element. Assume u^ > U2 so that the molecules of gas 1 give up for- 
ward momentum on the average when colliding with molecules of gas 2. For purposes of orientation 
let us first assume, as in the hard elastic sphere model, that the scattering is isotropic in the cen- 
ter of mass system. Then the average momentum of molecule 1 in the x-direction after collision 
will be mjüc where uc is the x-component of the mean velocity of the center of mass and is given 
by: 

uc = (mjuj + m2u2)/(m1 + m2) 

The average momentum of molecule 1 before collision is m^uj; therefore the average amount of 
forward momentum lost in one collision is m^(u^-ü ) or m+(ui-u2) in terms of the reduced mass. 
The number of collisions per second per unit volume between unlike molecules is: 

n^d^v2^2)1^ 

where d12 
is tne collision diameter for unlike molecule encounters. Hence the momentum transfer- 

red per second from gas 1 to gas 2 per unit volume (Mj2) would appear to be: 

m+(Ul-U2) • nin27rd22 . (vj + v2)1/2 

on the average; however, the average momentum transferred is not quite the same as the average 
momentum loss per collision multiplied by the average number of collisions. Furthermore, the 
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assumption of "hard elastic sphere" molecules is unnecessarily restrictive. It is readily seen that 
the momentum exchange M12 can be expressed directly in terms of the coefficient for ordinary 
mutual diffusion D12 without special assumptions about the law of force or the distribution-in-angle 
of the scattering. Provided only that the drift velocities uj and u2 are small in comparison with the 
thermal velocities v^ and v2, the momentum transfer M12 will be simply proportional to ui~u2 

and will not otherwise depend on the drift velocities (see Appendix I). Consider now a mutual dif- 
fusion of the same gas mixture at uniform total pressure with no total flow of molecules. Denoting 
the momentum transfer per unit volume per unit time from species 1 to species 2 by M^) under 
the special conditions of mutual diffusion, we have: 

M12/Mg) = (ui-u^Auf) -uf>) = (Ui -u2)nin2/nrf,> (5) 

since  rlD) +   r2
D)   = n]u^D) + n2uiD)   = 0. Considering now a steady mutual diffusion in the x- 

direction through an element of gas of unit area and thickness dx, it is evident that the momentum 
received by component 1 from its partial pressure gradient is transferred to component 2 giving: 

(dp1/dx)dx + M(°) dx = 0 

whence: 

r{f] = -Di^/dx) = DyM^AT 

and therefore: 

Mi2 = (u1-u2)(n1n2kT/nD12) (6) 

Equation 6 is independent of the law of force acting between the molecules and for small drift velo- 
cities is practically independent of the distribution function. In the special case of "hard elastic 
sphere" molecules, the value obtained for Dj2 either by Stefan's momentum transfer method13 or 
in the first approximation of the Enskog-Chapman theoryl4 is: 

_  3   ,7TkT 1/2        1 /m 
Di2 = T (1S^     ' l^dT (7) 

Introducing equation 7 into equation 6 and replacing 8kT/77m+ by v^ + v2 we obtain: 

M12 = (4/3)m+(Ul-u2) ■ n^Trd^ . (v2 + V2)1/2 (6-a) 

which differs by a factor of 4/3 from our preliminary result. Formulae 6 and 6-a apply to any vol- 
ume element in the flowing gas. The momentum transfer from gas 1 to gas 2 in the cylindrical 
element bounded by the wall of the capillary is then M127rr2dx provided that uj and u2 are interpreted 
as the drift velocities averaged over the cross section. The following equations express the mo- 
mentum balance in the cylindrical element*: 

-irr2 • (dpj/dx) = (3TT/8) • m^ • (njVj/4) • 2irr + (ux -u2; • (n1n2kT/nD12) • irr2 

-irr2 • (dp2/dx) = (3TT/8) • m2u2 • (n2v2/4) • 27rr-(u1-u2) • (n1n2kT/nD12) • irr2 (8) 

Adding and introducing the molecular flows per unit area Gj and G2 averaged over the cross section; 
i.e., Gj = n^, we find: 

-r(dp/dx) = (37r/16)(m1v1G1 + m2v2G2) (9) 

Since the right-hand side of equation 9 is a constant, the total pressure decreases linearly along the 
tube. Introducing the abbreviations: 

*It is readily seen that under the specified conditions of low pressure flow through long tubes 
the dynamical inertia term proportional to u   öu/fl x can be neglected. 
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hf>n-   8r .^kT 1/2,   <m1/2>N 1 
°W       3TT     4m+j (mi + m^l/2     pD12 

<*l/2> N=NmJ/2   + (l-N)mV2 

where N(x) denotes the mol fraction of gas 1 and using the Maxwellian value of "v, one finds from 
equation 8 that: 

_r       JL(J1_^/2 r [J_    .  I . dÄ + _? b(N)p dp_\ 
1     3?7 4kT; |     1/2      l+b(N)p dx       /l/2\    ' 1 + b(N)p '   dx [ y    ' 

The first term, which is inversely proportional to mV2, is ideally separative. The second term is 
nonseparative, it vanishes as the pressure goes to zero (X 3> r), and for large pressures (X <K  r) 
it is negligible compared with viscous flow. In the case of a pure gas (N = 1) the two terms coalesce 
to give the free-molecule flow formula (equation 1). It is readily seen that if the capillary has a 
uniform noncircular cross section, the same expressions for b and G^ are valid if r is interpreted 
as twice the cross sectional area divided by the perimeter. Badger's9 semi-empirical equation is 
similar to equation 11; however, in his formulation b(N)/ ^mV2^ was not independent of concen- 
tration. The second term of equation 11 representing a nonseparative diffusion becomes important 
when b(N)p « 1. In the case of an isotopic mixture it is evident that: 

bp = 2r        ^_i/2.   1     =DK   =K(r ( 

where D-Q is the self-diffusion coefficient and DK the Knudsen coefficient 2vr/3 for free molecule 
diffusion. The mean free path X has been introduced in connection with the isotopic mixture and K 
denotes a numerical factor in the neighborhood of unity whose precise value depends on the relation- 
ship assumed between DJJ and X. It follows from equations 11 and 12 that the separation ceases to 
be ideal when X becomes comparable to r. 

CAPILLARY THEORY OF SEPARATION 

In the preceding section it has been assumed that the effects of viscosity could be neglected in 
first approximation because of the small transverse gradient of the transport velocity. However, the 
transition to viscous flow takes place in the same ränge of pressures (X « r) in which the non- 
separative diffusion becomes important. Consequently, although the effects of viscosity on separa- 
tion are small in this range of pressure, they cannot be neglected. At higher pressures the entire 
diffusive flow equation 11 becomes negligible compared to the viscous flow. We now assume that 
the flow of a mixture of two gases at intermediate pressures can be represented by adding the vis- 
cous laminar flow to the diffusive flow of equation 11. In the case of pure gas flow through capil- 
laries the transition region can be represented only approximately by adding the free-molecule and 
laminar flows: the minima found by Knudsen, Gaede, and Adzumi in the curve of specific flow versus 
mean pressure indicate that the flows are not strictly additive. Except at high pressures and low 
separation efficiences, however, the effect of the viscous term is small and the error made by as- 
suming exact additivity is of second order. The Poiseville term in the following formulae may be 
regarded as an additive perturbation on the main diffusive flow. As previously noted, the assumption 
of additivity is a better approximation for porous media than for capillary tubes. 



AECD - 2411 

Equation 11 is now rewritten for each component to include the viscous flow: 

-2L -   f+     . & + mum . N dp_ +   (   dp_ 
g    " 1 + b(N)p       dx     + 1 + b(N)p     N ax   + Na(N,P dx 

-91 „       1 . dO^SE + »fP- • (1-N)^ + (l-N)a(N)pjL 
g        1 + b(N)p dx 1 + b(N)p 'dx rdx 

(13) 

where g = (8/37r)(77/2kTm2)1/2r 

I(N) = mj/2 /^m1/2^ (14) 

a(N) =3r/1677(N)v2 

The value of a is obtained from the Poiseuille flow through a circular capillary divided by the area 
of cross section: (r2p/8rj)dn/dx. All three terms in equation 13 represent averages over the cross 
section of the tube. The relative importance of the nonseparative diffusion and the viscous flow 
term is measured by the ratio X(N) = b(N)/a(N). It follows from equations 10 and 14 that: 

X(N) - ÜF 1/2 7(N)D72 m2ml 

where p(N) is the mass density and <^m> JJ = Nmj + (1 -N)m2. In the case of an isotopic mixture 
D12 reduces to the self-diffusion coefficient D^. The dimensionless constant pD^/r] may range 
in value from 1.20, corresponding to "rigid elastic sphere" molecules, up to about 1.5 for mole- 
cules repelling nearly as the inverse fifth power of the distance. In practice pD^/?j lies usually 
between 1.30 and 1.40; hence, the value of X for an isotopic mixture is roughly independent of the 
gas. Experiments13 indicate that the best value of pD^/i) for the UFg isotopic mixture is in the 
neighborhood of 4/3, corresponding to X = 64/37T. 

The differential equation of separation will now be obtained. Let v denote the molar fraction 
of the first gas at the outlet; then Gi/G2 = v/1 -v, expressing the condition that the composition of 
the gas at the exit is determined entirely by the flow rates through the tube. By substituting equa- 
tions 13 in this relation and writing dN/dx = (dN/dp)(dp/dx) one obtains: 

p$E <Tf+ (i -v) + ty + (N -v)  {(fb + a)p + abp2} + f+N(l -v) - v(\ -N) = 0 (16) 

Let y = N-^ and h(v) =1 + (f+-l)(l-f), then equation 16 becomes: 

hp-^1 + [h + {fb + a(y)} p + a(y)b(y)p2] y + (f+-lMi-tf = 0 (17) 

Evidently v and lb are constants but the parameters a and b depend on the composition at every 
point through rj(N) and ^m1/2^ respectively. Since yn1'2^ is a linear function of N and since 
\/T) (N) can be approximately represented by a linear function over not too large a range, we may 
rewrite equation 17 in the form (neglecting the small terms py2 and p2y3): 

p(dy/dp) + -Tl + cp + lp2V y + mp2y2 + s = 0 (18) 

The solution of equation 18 can be obtained analytically in terms of confluent hypergeometric func- 
tions (See Appendix II) or more simply by numerical integration. However, even in the case of a 
gas mixture in which the molecular mass ratio and the change of composition are large and the 
coefficient of p2 in equation 17 varies considerably, e.g., H2 - C02, the solution of equation 17 is 
found to differ by only a few per cent at low and negligibly at high separation efficiencies from the 
solution in which a and b are treated as constants and given their values at the inlet. Since the com- 
position of the gas in ideal Knudsen flow is constant at the inlet value throughout the length of the 
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tube, it is obviously preferable to use the inlet rather than the outlet values of a and b. Hence for 
all mixtures in which the molecular mass ratio of the components is not too large, we may replace 
equation 17 by: 

h(^)p(dy/dp) + {h(v) + clP + c2p2}y + <f+-l)v(l-v) = 0 (19) 

where c\ = fb + a and c2 = ab. On integrating from the outlet to the inlet we obtain: 

vr^>-N     » (f+-lMl-Vi   ^PB   exp <(clP + (c2/2)p2)/h(^)> dp 
y(PF) - N0-, = - — Wp- exp <£{pF + (c2/2)p2)/h(,)> (20) 

where pF and pB denote fore- and back-pressures and N the inlet concentration. We define the 
separation efficiency Z as the ratio of the actual enrichment to the ideal enrichment at constant 
back-composition. It is readily seen that: 

r 4>F 

7 -   (^-No)h(y) J*B     exp   {[ (1 + Xf)0 + (X/2)<ft2 ] /h(^)> d<ft 
(f+ -lMl-i/)- <f>    exp   <[(1 + Xf)0F + (X/2)02 ] /h(i/)> ^ 

-r F 

where the "reduced pressure" <f> = ap = 3rp/16rjV2 has been introduced. A curve of Z versus <ftF 

for fixed 4>-a/<f>F will be referred to as a "fore-pressure curve." It is apparent from equation 21 
that there is no universal fore-pressure curve which would be independent of the gas mixture. How- 
ever, since the X of an isotopic mixture is approximately independent of the gas, one may, to good 
approximation, use a universal fore-pressure curve for isotopic mixtures. In this case (f ~ 1, h(t>) 
~  1) equation 21 reduces to: 

r<PF 

_ J4>B    exp <C(1 + X) <t> -f (X/2)<£2> d«ft 
* '     5Fexp^(r+X)<ftF+(X/2)<ft|> ('l-*> 

It is convenient for purposes of comparison with experiment to have the pressures expressed in 
terms of P5Q, the fore-pressure at which Z = 0.50 when the back-pressure is zero. Using X - 64/37T, 
one finds that Z = 0.50 when </>F = 0.1834 and <ftB = 0. Introducing the "relative pressure" ir = P/P50 = 
<f>/4>§n, equation 21-a  becomes: 

r ^F 
•/(■*     „  ^        TB      exP {1-4307T + 0.1142TT

2
> dir , 

Z^' *B> =      Cv exp (1.430^ + 0.1142^ (2* ~b) 

Numerical results from equation 21-a are insensitive to variations in X arising from the slightly 
different values of pDjj/77 appropriate to different gases. When 7Tg = 0 a good approximation to 
equation 21-b is given by: 

Z"1 = 1 +0.66277F +0.338772 0 s= 7rF =£ 2 (21-c) 

In the stated range of fore-pressures this formula is nowhere in error by more than 1 per cent. 
In the case of a general binary gas mixture it is convenient to introduce the variable: 

t   =(X/2h)X/20 + to 

t„ = (1 +Xf)/(2hX)1/2 

Equation (21-b) was derived independently by C. H. Bosanquet from a quite different point of 
view. Bosanquet's results, which were communicated to R. Peierls in letters dated May 8 and 19, 
1944, were obtained slightly earlier than those of the present authors. The considerations of 
Bosanquet were restricted to isotopic mixtures; however, it has been shown by Pollard (A-3813, 
November 23, 1945) that the method of Bosanquet can be generalized to an arbitrary gas mixture. 
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Equation 21 can then be written in a general form for all gas mixtures as the simple three-parameter 
function: 

tF f   * 2 
Z(tF, tB, to) = Jt       et2 dt/(tF-yetF 

B "FC (22) 

The integrals are conveniently evaluated from the following formula* based on an approximation by 
Tschebyscheff polynomials and having in the range 2 s= X < «> an error nowhere exceeding 1 part 
in 2000: 

f   et2 dt = (ex2/2x) {Ö.9995 + 0.1489(2/x)2-0.1361(2/x)4 

■'o 

+ 0.4525(2/x)6 - 0.2184(2/x)8} -0.56 (23) 

Graphs of Z vs tp for selected values of tß and tQ can be simply prepared and applied to the sepa- 
ration of various binary gas mixtures for the two cases of constant fore-composition and constant 
back-composition. 

The integration of equation 19 from the outlet of the capillary (at given back-pressure and back- 
composition) to a variable pressure p enables one to plot N as a function of p. Starting from the in- 
let value N0, N is found to decrease monotonically along the tube when pB = 0 and then jump dis- 
continuously to the value v at the exit; when pß is small but finite the concentration of light com- 
ponent first decreases and then rises steeply but continuously near the exit. The explanation of the 
initial decrease in N is as follows: The ratio of the light component transport velocity to that of 
the heavy component is not constant as in free-molecule flow but increases as the lower pressure 
region of the tube is reached because of the decreasing frequency of collisions between unlike mole- 
cules. Since the ratio of concentrations is inversely proportional to the ratio of transport velocities, 
the light component concentration must decrease down the tube rising near the outlet because of 
back diffusion. 

This article will be concluded with a brief consideration of the total flow of a mixed gas through 
the capillary tube. The total flow of the mixture is obtained by adding together the equations for the 
two components in equation 13 and eliminating the term in dN/dp by the use of equation 16. The re- 
sult for G = G, + G2 is simply: 

-G./g = f(f)dp/dx + {f(v)/f(N)} a(N)p dp/dx (24) 

wheref and a are defined by equations 14. Introducing g' = gm*/2 and a'   = a(N)77(N)m1/2 

= 3r/16v2m^/2 into equation 24, one obtains: 

<teI72>„   ]/T „(N) 

which may be compared with the corresponding formula for a pure gas: 

The first term of equation 24-a, which represents the free-molecule flow of a mixed gas, is seen 
to be inversely proportional to the average value of the square root of the molecular mass, the aver- 
age being taken with respect to the outlet composition. The integration of equations 24 or 24-a is 
complicated by the fact that the coefficient of p dp/dx is a function of composition and the composi- 
tion varies with the pressure as the gas flows from the inlet to the outlet. Details will not be given 
here.t 

*This formula was calculated for us by Dr. C. Lanczos. 
tThe calculations represented by equations 24, 24-a, and 24-b were made by Bethune and 

Pollard, A-2145, October 18, 1944. 
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APPENDIX I 

MOMENTUM TRANSFER IN THE GAS 

It will be shown here that for simple approximate distribution functions the momentum trans- 
fer is proportional to the difference in transport velocities uj-Ug, Since very similar derivations 
are to be found in the literature,14 the discussion is abbreviated. 

Let V =,Vj -_V2 be the relative velocity of two unlike molecules before an encounter and let i[r 
denote the angle between V and the relative velocity after collision; i.e., tfris the angle of deflection 
in the center of mass system. Assuming a spherically symmetrical interaction, the angle #■ evi- 
dently depends only on the relative speed V = I Vl and the impact parameter b. The number of un- 
like molecule collisions per unit volume per unit time between molecules with velocities in the range 
vx tovj + dvi and molecules of the other type with velocities between^ and_y2 + dv2 is dnjdngV • 
2?Tbdb for impact parameters between b and b + db. It is readily seen that the momentum transferred 
to molecule 2 in a single collision has a component m+V(l -cos ifr) in the direction of V and that the 
perpendicular component averages to zero. Hence the momentum transfer per unit volume per unit 
time from the group dnx to the group dn2 is dnjdngm+VV <T(V) where: 

/»CO 

a(V) =   /    27rbdb(l-cos ip) 

is the cross section for momentum transfer (in the case of hard elastic spheres c = 7rd12 where 
d12 is the mean diameter). Evidently, dni = n^dy^ where fi is the velocity distribution function for 
gas i drifting in the x-direction with velocity u^ Provided that 14 «C  vi; a good approximation is 
obtained by taking: 

fida = (ftA)3/2e-ft(vix-ui)2   dVixe -V2ydv.ye-^
2-dv.z 

= (SiA)3/2e -ft
v,2 

(1 + 2/3^^)4^ 

where 8- = m^kT. The total transfer of momentum per unit volume per unit time in the x-direction 

is then: 

Mx = m+n^/dv^ f<« if   (1 + 2/31u1vlx)(l + 2,3^ v^V c (V) 

= 2m+n1n2/dv1/dv2f
(

1
0)ff  (^»^ + V2W " (V) 

2 
using the abbreviation if* = (/^A)3,72 e-0^1 . The simplification of the foregoing equation follows 
from considerations of parity. We transform coordinates from^,^2 to C, V where C is the velocity 
of -the center of mass. It is readily found that: 

ML 
m nln2 

kT 
/dCydV f^f^ VxV  a (V) {(mlUl + m2u2)Cx + m+dij -u2)Vx} 

where f(°) = (mi + m2/2,kT)3/2 e-(m1+m2/»T>C2 

and     if - (mV2,kT)3/2 e-(m
+/2kT)V2 

The term in Cx vanishes since the integrand is odd. Mx is, therefore, proportional to Uj-Ug. 
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APPENDIX 2 

Equation 18 is rewritten: 

pdy/dp + {1 + cp + lp2} y + mp2y2 + s = 0 (A) 

where c, 1, m, and s are constants characteristic of the gas mixture. The solution is subject to the 
condition that y = 0 when p = pg. Let u = py, then equation A becomes: 

du/dp + (c + lp)u + mu2 + s = 0 

This is Riccati's equation. It can be transformed into a second-order linear equation by the sub- 
stitution u = (mw)"ldw/dp and the resulting equation is: 

d2w/dp2 + (c + lp)dw/dp + msw = 0 

Let:    z = r1'2(c + lp) and a = ms/21 

Then:   d2w/dz2 + zdw/dz + 2aw = 0 (B) 

The general solution of equation B can be written in terms of the confluent hypergeometric functions. 
In the notation of Jahnke-Emde and Webb-Airey the solution is: 

1     z 1/2 13 z2 

w = AM(a, —, —) + Bz '   M(a + —, —, - —) (C) 

dw/dz = -2azAM(« + 1, -1, - -!_) + (B/2)Z-V2M(a + i-, |-, - ±_) 

-Bz3/2 [(2a + l)/3]M(a + |-, y,-y-) 

where A and B are arbitrary constants, the ratio of which is fixed by the boundary condition: y = 0 
at p = pg. Hence dw/dz = 0 when z = Zg = 1*' 2Pg + cl"-*-/2. 

2 

B 12az|/2 M(« + 1, |",-^f-) 

,2 Z2 
1       <? zn 9 1       <i ZR 

A       3M(a + -i-, ±  - -f) -(4a +2)Zg M(a + ±, f,—f-) 

By using the asymptotic value of M(a, y, x) for large x, the asymptotic solution for large fore- 
pressures is found to be: 

w_1dw/dz ->-2a/z z   ■*■ °° 

y   ■>•   -s/lp2 p  ->•   •» 

The asymptotic form of the solution for large fore-pressures indicates that the separation efficiency 
falls off as the inverse square of the pressure. This is in agreement with the result for high-pressure 
differential diffusion based on the Chapman-Enskog diffusion formula.*5 

The formal solution (equation C) is inconvenient for numerical work. Actual calculations were 
carried out by two methods. In method I we made use of the fact that the solution of equation A was 
known for the case m = 0 from previous work in which the variation of C2 with y was neglected. 
Since the term in p2y2 is initially small, the previous solution in terms of the tabulated integral 
y" x et   dt was used for the first part of the interval and the Runge-Kutta method of numerical in- 

tegration the remainder of the way. In method II, equation B was solved by power series after first 
changing the independent variable to z-zg. This method cannot be used when pg = 0. 
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